:::: MENU ::::
автосервис | мужской спа салон самара | спа салон для мужчин | скорлупы ппу | комплект изоляции стыка ппу | плакетка наградная заказать | модульные котельные на газе | насосы для отопления цена | насосы циркуляционные для отопления цена | дрель аккумуляторная | дрель миксер купить | отбойный молоток электрический | рубанок купить | интим магазин | секс игрушки | сексшоп | отвод 17375 2001 в Челябинске | гост днища эллиптические в Челябинске | соус sriracha купить | острые соусы купить | цветы с доставкой

3D environments for agent-based models


As part of my coursework at CASA we are being introduced to some of the latest 3D visualisation technologies and experimenting with how they might be used in a cities research context. Below are some examples of what can be achieved in a short period of time with these software packages.

The moving parts of these visualisations can be defined as agents. Agents with programmed behaviours and decision-trees can, in part, attempt to re-create and predict the appearance of complex real-world phenomena. This process can be defined as emergence – when complex systems arise from relatively simple interactions.

My very first thoughts when experimenting with these programs was – what is the difference between this and the complex behaviours we experience in video games or in movies (such as the large, generated crowds in Lord of the Rings)?

The first and most obvious of these differences is the purpose. Agent-based and other models are designed to provide scientific prediction of future, real-world events. Computer games are constructed primarily for enjoyment / entertainment (though can sometimes seem very realistic).

In video games, the human player takes control of the model and what effects occur, whereas in ABMs the input is largely derived from the data and defined conditions. In the real world simulations, these are based on theories of human (or other agents’) behaviour, while video game agents these behaviours will be based on plot points, be largely fictional and generally better looking.

Where these might collide is placing humans within the agent-based simulation – such as through immersive gaming experiences offered by the Occulus Rift. It is also interesting to think about emergent behaviour of humans interacting with eachother virtually within video game environments – such as in massively-multiplayer games.

1) Blocks following a terrain and avoiding a teapot
Uses: 3D Studio Max

Simple Agents in 3D Studio Max from Oliver Lock on Vimeo.

2) Gravity simulation of particles on a generated city-scape
Uses: Greeble, 3D Studio Max

Simple Agents in 3D Studio Max II from Oliver Lock on Vimeo.

3) Pedestrian movements in a built environment
Uses: CityEngine, 3D Studio Max

3) Pedestrians walking through a building
Uses: CityEngine (3D Model), 3D Studio Max

CityEngine model with 3DS Max Pedestrian Flows from Oliver Lock on Vimeo.

A quick example of these put into more complex, real-world practice is this stadium evacuation produced by Redfish.

4) Agent-Based Model of Crowd Dynamics During Disaster Evacuation

Stadium Evacuation from stephen guerin on Vimeo.

In terms of sharing these models, I recently discovered P3D which allows you to share very clean 3D models in your browser. Integrating simple ABMs into these would be a great way to communicate their results.